Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Cell Rep ; 43(4): 114047, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607916

RESUMEN

Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning ß cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and ß cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human ß cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in ß cells to maintain appropriate insulin release.


Asunto(s)
Secreción de Insulina , Células Secretoras de Insulina , L-Lactato Deshidrogenasa , Ácido Láctico , Humanos , Células Secretoras de Insulina/metabolismo , Animales , L-Lactato Deshidrogenasa/metabolismo , Ratones , Ácido Láctico/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Isoenzimas/metabolismo , Ciclo del Ácido Cítrico , Ratones Endogámicos C57BL , Masculino
2.
J Physiol ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345865

RESUMEN

Androgenic anabolic steroids (AAS) are commonly abused by young men. Male sex and increased AAS levels are associated with earlier and more severe manifestation of common cardiac conditions, such as atrial fibrillation, and rare ones, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Clinical observations suggest a potential atrial involvement in ARVC. Arrhythmogenic right ventricular cardiomyopathy is caused by desmosomal gene defects, including reduced plakoglobin expression. Here, we analysed clinical records from 146 ARVC patients to identify that ARVC is more common in males than females. Patients with ARVC also had an increased incidence of atrial arrhythmias and P wave changes. To study desmosomal vulnerability and the effects of AAS on the atria, young adult male mice, heterozygously deficient for plakoglobin (Plako+/- ), and wild type (WT) littermates were chronically exposed to 5α-dihydrotestosterone (DHT) or placebo. The DHT increased atrial expression of pro-hypertrophic, fibrotic and inflammatory transcripts. In mice with reduced plakoglobin, DHT exaggerated P wave abnormalities, atrial conduction slowing, sodium current depletion, action potential amplitude reduction and the fall in action potential depolarization rate. Super-resolution microscopy revealed a decrease in NaV 1.5 membrane clustering in Plako+/- atrial cardiomyocytes after DHT exposure. In summary, AAS combined with plakoglobin deficiency cause pathological atrial electrical remodelling in young male hearts. Male sex is likely to increase the risk of atrial arrhythmia, particularly in those with desmosomal gene variants. This risk is likely to be exaggerated further by AAS use. KEY POINTS: Androgenic male sex hormones, such as testosterone, might increase the risk of atrial fibrillation in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), which is often caused by desmosomal gene defects (e.g. reduced plakoglobin expression). In this study, we observed a significantly higher proportion of males who had ARVC compared with females, and atrial arrhythmias and P wave changes represented a common observation in advanced ARVC stages. In mice with reduced plakoglobin expression, chronic administration of 5α-dihydrotestosterone led to P wave abnormalities, atrial conduction slowing, sodium current depletion and a decrease in membrane-localized NaV 1.5 clusters. 5α-Dihydrotestosterone, therefore, represents a stimulus aggravating the pro-arrhythmic phenotype in carriers of desmosomal mutations and can affect atrial electrical function.

3.
Br J Pharmacol ; 181(5): 698-711, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37740611

RESUMEN

BACKGROUND AND PURPOSE: 11ß-Hydroxysteroid dehydrogenase-1 (11ß-HSD1) catalyses the oxoreduction of cortisone to cortisol, amplifying levels of active glucocorticoids. It is a pharmaceutical target in metabolic disease and cognitive impairments. 11ß-HSD1 also converts some 7oxo-steroids to their 7ß-hydroxy forms. A recent study in mice described the ratio of tauroursodeoxycholic acid (TUDCA)/tauro-7oxolithocholic acid (T7oxoLCA) as a biomarker for decreased 11ß-HSD1 activity. The present study evaluates the equivalent bile acid ratio of glycoursodeoxycholic acid (GUDCA)/glyco-7oxolithocholic acid (G7oxoLCA) as a biomarker for pharmacological 11ß-HSD1 inhibition in humans and compares it with the currently applied urinary (5α-tetrahydrocortisol + tetrahydrocortisol)/tetrahydrocortisone ((5αTHF + THF)/THE) ratio. EXPERIMENTAL APPROACH: Bile acid profiles were analysed by ultra-HPLC tandem-MS in blood samples from two independent, double-blind placebo-controlled clinical studies of the orally administered selective 11ß-HSD1 inhibitor AZD4017. The blood GUDCA/G7oxoLCA ratio was compared with the urinary tetrahydro-glucocorticoid ratio for ability to detect 11ß-HSD1 inhibition. KEY RESULTS: No significant alterations were observed in bile acid profiles following 11ß-HSD1 inhibition by AZD4017, except for an increase of the secondary bile acid G7oxoLCA. The enzyme product/substrate ratio GUDCA/G7oxoLCA was found to be more reliable to detect 11ß-HSD1 inhibition than the absolute G7oxoLCA concentration in both cohorts. Comparison of the blood GUDCA/G7oxoLCA ratio with the urinary (5αTHF + THF)/THE ratio revealed that both successfully detect 11ß-HSD1 inhibition. CONCLUSIONS AND IMPLICATIONS: 11ß-HSD1 inhibition does not cause major alterations in bile acid homeostasis. The GUDCA/G7oxoLCA ratio represents the first blood biomarker of pharmacological 11ß-HSD1 inhibition and may replace or complement the urinary (5αTHF + THF)/THE ratio biomarker.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1 , Glucocorticoides , Animales , Humanos , Ratones , Ácidos y Sales Biliares , Biomarcadores , Glucocorticoides/metabolismo , Hidrocortisona/metabolismo , Tetrahidrocortisol
4.
Front Immunol ; 14: 1252874, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936704

RESUMEN

Background: Extra-adrenal glucocorticoid (GC) synthesis at epithelial barriers, such as skin and intestine, has been shown to be important in the local regulation of inflammation. However, the role of local GC synthesis in the lung is less well studied. Based on previous studies and the uncontentious efficacy of corticosteroid therapy in asthma patients, we here investigated the role of 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1/Hsd11b1)-dependent local GC reactivation in the regulation of allergic airway inflammation. Methods: Airway inflammation in Hsd11b1-deficient and C57BL/6 wild type mice was analyzed after injection of lipopolysaccharide (LPS) and anti-CD3 antibody, and in acute and chronic models of airway hypersensitivity induced by house dust mite (HDM) extract. The role of 11ß-HSD1 in normal and inflammatory conditions was assessed by high dimensional flow cytometry, histological staining, RT-qPCR analysis, ex vivo tissue cultures, GC-bioassays and protein detection by ELISA and immunoblotting. Results: Here we show that lung tissue from Hsd11b1-deficient mice synthesized significantly less GC ex vivo compared with wild type animals in response to immune cell stimulation. We further observed a drastically aggravated phenotype in Hsd11b1-deficient mice treated with HDM extract compared to wild type animals. Besides eosinophilic infiltration, Hsd11b1-deficient mice exhibited aggravated neutrophilic infiltration caused by a strong Th17-type immune response. Conclusion: We propose an important role of 11ß-HSD1 and local GC in regulating Th17-type rather than Th2-type immune responses in HDM-induced airway hypersensitivity in mice by potentially controlling Toll-like receptor 4 (TLR4) signaling and cytokine/chemokine secretion by airway epithelial cells.


Asunto(s)
Alergia a los Ácaros del Polvo , Glucocorticoides , Humanos , Animales , Ratones , Glucocorticoides/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Ratones Endogámicos C57BL , Inflamación , Alérgenos , Pyroglyphidae
5.
J Clin Endocrinol Metab ; 108(12): 3178-3189, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37339332

RESUMEN

BACKGROUND: Patients with adrenal insufficiency (AI) require life-long glucocorticoid (GC) replacement therapy. Within tissues, cortisol (F) availability is under the control of the isozymes of 11ß-hydroxysteroid dehydrogenase (11ß-HSD). We hypothesize that corticosteroid metabolism is altered in patients with AI because of the nonphysiological pattern of current immediate release hydrocortisone (IR-HC) replacement therapy. The use of a once-daily dual-release hydrocortisone (DR-HC) preparation, (Plenadren®), offers a more physiological cortisol profile and may alter corticosteroid metabolism in vivo. STUDY DESIGN AND METHODS: Prospective crossover study assessing the impact of 12 weeks of DR-HC on systemic GC metabolism (urinary steroid metabolome profiling), cortisol activation in the liver (cortisone acetate challenge test), and subcutaneous adipose tissue (microdialysis, biopsy for gene expression analysis) in 51 patients with AI (primary and secondary) in comparison to IR-HC treatment and age- and BMI-matched controls. RESULTS: Patients with AI receiving IR-HC had a higher median 24-hour urinary excretion of cortisol compared with healthy controls (72.1 µg/24 hours [IQR 43.6-124.2] vs 51.9 µg/24 hours [35.5-72.3], P = .02), with lower global activity of 11ß-HSD2 and higher 5-alpha reductase activity. Following the switch from IR-HC to DR-HC therapy, there was a significant reduction in urinary cortisol and total GC metabolite excretion, which was most significant in the evening. There was an increase in 11ß-HSD2 activity. Hepatic 11ß-HSD1 activity was not significantly altered after switching to DR-HC, but there was a significant reduction in the expression and activity of 11ß-HSD1 in subcutaneous adipose tissue. CONCLUSION: Using comprehensive in vivo techniques, we have demonstrated abnormalities in corticosteroid metabolism in patients with primary and secondary AI receiving IR-HC. This dysregulation of pre-receptor glucocorticoid metabolism results in enhanced glucocorticoid activation in adipose tissue, which was ameliorated by treatment with DR-HC.


Asunto(s)
Insuficiencia Suprarrenal , Glucocorticoides , Humanos , Glucocorticoides/uso terapéutico , Glucocorticoides/metabolismo , Hidrocortisona/metabolismo , Estudios Prospectivos , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/metabolismo , Estudios Cruzados , Corticoesteroides , Insuficiencia Suprarrenal/tratamiento farmacológico
6.
Exp Physiol ; 108(8): 1066-1079, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37166422

RESUMEN

NEW FINDINGS: What is the central question of this study? To what extent does musculoskeletal impairment occur (i.e., muscle mass, quality and function) in patients with end stage liver disease (ESLD) by comparison to a healthy age/sex-matched control group? What is the main finding and its importance? Muscle mass, quality and function are impaired in patients with ESLD (compared to age/sex matched controls). Importantly, greater impairments were seen in lower limb compared to arm and trunk muscle groups. These findings may suggest that there should be greater consideration of muscle health in functionally relevant lower limb muscle groups. ABSTRACT: Sarcopenia is associated with reduced quality of life and increased mortality in patients with end stage liver disease (ESLD). Historically, sarcopenia identification in ESLD utilised L3 skeletal muscle index (SMI). There are few data on muscle quality and function within lower limb muscle groups with high functional relevance. The aim of this prospective case-control study was to evaluate the quadriceps muscle in patients with ESLD. Muscle mass and quality were evaluated using MRI (quadriceps anatomical cross sectional area (ACSA), quadriceps volume index, L3 SMI, quadriceps intermuscular adipose tissue (IMAT)), mid-arm muscle circumference (MAMC) and ultrasonography (vastus lateralis (VL) thickness and quadriceps ACSA). Muscle strength/function was assessed by handgrip strength, peak quadriceps isokinetic torque and chair rise time. Thirty-nine patients with ESLD (55 years, 61% male, 48% alcoholic related liver disease (ArLD), 71% Child-Pugh B/C) and 18 age/sex-matched healthy control participants (HC) were studied. Quadriceps mass was significantly reduced in ESLD versus HC (-17%), but L3 SMI and MAMC were unchanged. Quadriceps IMAT percentage was increased in ESLD (+103%). Handgrip strength (-15%), peak isokinetic torque (-29%), and chair rise time (+56%) were impaired in ESLD. Ultrasound measures of VL thickness (r = 0.56, r = 0.57, r = 0.42) and quadriceps ACSA (r = 0.98, r = 0.86, r = 0.67) correlated to MRI quadriceps ACSA, quadriceps volume and L3 SMI, respectively. Quadriceps muscle mass, quality, and function were impaired in patients with ESLD, whereas conventional assessments of muscle (L3 SMI and MAMC) highlighted no differences between ESLD and HC. Full evaluation of lower limb muscle health is essential in ESLD in order to accurately assess sarcopenia and target future interventions.


Asunto(s)
Enfermedad Hepática en Estado Terminal , Sarcopenia , Humanos , Masculino , Femenino , Estudios Transversales , Fuerza de la Mano , Calidad de Vida , Estudios de Casos y Controles , Extremidad Inferior , Músculo Esquelético/fisiología , Músculo Cuádriceps/fisiología , Fuerza Muscular/fisiología
7.
Cell Death Discov ; 9(1): 133, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37087471

RESUMEN

The ADP-ribosyltransferase, PARP1 enzymatically generates and applies the post-translational modification, ADP-Ribose (ADPR). PARP1 roles in genome maintenance are well described, but recent work highlights roles in many fundamental processes including cellular identity and energy homeostasis. Herein, we show in both mouse and human skeletal muscle cells that PARP1-mediated PARylation is a regulator of the myogenic program and the muscle transcriptional response to steroid hormones. Chemical PARP1 modulation impacts the expression of major myocellular proteins, including troponins, key in dictating muscle contractile force. Whilst PARP1 in absence of DNA damage is often assumed to be basally inactive, we show PARylation to be acutely sensitive to extracellular glucose concentrations and the steroid hormone class, glucocorticoids which exert considerable authority over muscle tissue mass. Specifically, we find during myogenesis, a transient and significant rise in PAR. This early-stage differentiation event, if blocked with PARP1 inhibition, reduced the abundance of important muscle proteins in the fully differentiated myotubes. This suggests that PAR targets during early-stage differentiation are central to the proper development of the muscle contractile unit. We also show that reduced PARP1 in myoblasts impacts a variety of metabolic pathways in line with the recorded actions of glucocorticoids. Currently, as both regulators of myogenesis and muscle mass loss, glucocorticoids represent a clinical conundrum. Our work goes on to identify that PARP1 influences transcriptional activation by glucocorticoids of a subset of genes critical to human skeletal muscle pathology. These genes may therefore signify a regulatory battery of targets through which selective glucocorticoid modulation could be achieved. Collectively, our data provide clear links between PARP1-mediated PARylation and skeletal muscle homeostatic mechanisms crucial to tissue mass maintenance and endocrine response.

8.
Cell Rep ; 42(5): 112372, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37086404

RESUMEN

Autophagy is a homeostatic process critical for cellular survival, and its malfunction is implicated in human diseases including neurodegeneration. Loss of autophagy contributes to cytotoxicity and tissue degeneration, but the mechanistic understanding of this phenomenon remains elusive. Here, we generated autophagy-deficient (ATG5-/-) human embryonic stem cells (hESCs), from which we established a human neuronal platform to investigate how loss of autophagy affects neuronal survival. ATG5-/- neurons exhibit basal cytotoxicity accompanied by metabolic defects. Depletion of nicotinamide adenine dinucleotide (NAD) due to hyperactivation of NAD-consuming enzymes is found to trigger cell death via mitochondrial depolarization in ATG5-/- neurons. Boosting intracellular NAD levels improves cell viability by restoring mitochondrial bioenergetics and proteostasis in ATG5-/- neurons. Our findings elucidate a mechanistic link between autophagy deficiency and neuronal cell death that can be targeted for therapeutic interventions in neurodegenerative and lysosomal storage diseases associated with autophagic defect.


Asunto(s)
NAD , Mononucleótido de Nicotinamida , Humanos , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Neuronas/metabolismo , Mitocondrias/metabolismo , Autofagia , Niacinamida/metabolismo
9.
Front Physiol ; 14: 1114595, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960150

RESUMEN

Methods of isolating mitochondria commonly utilise mechanical force and shear stress to homogenize tissue followed by purification by multiple rounds of ultracentrifugation. Existing protocols can be time-consuming with some physically impairing integrity of the sensitive mitochondrial double membrane. Here, we describe a method for the recovery of intact, respiring mitochondria from murine skeletal muscle tissue and cell lines using nitrogen cavitation. This protocol results in high-yield, pure and respiring mitochondria without the need for purification gradients or ultracentrifugation. The protocol takes under an hour and requires limited specialised equipment. Our methodology is successful in extracting mitochondria of both cell extracts and skeletal muscle tissue. This represents an improved yield in comparison to many of the existing methods. Western blotting and electron microscopy demonstrate the enrichment of mitochondria with their ultrastructure well-preserved and an absence of contamination from cytoplasmic or nuclear fractions. Using respirometry analysis we show that mitochondria extracted from murine skeletal muscle cell lines (C2C12) and tibialis anterior tissue have an appropriate respiratory control ratio. These measures are indicative of healthy coupled mitochondria. Our method successfully demonstrates the rapid isolation of functional mitochondria and will benefit researchers studying mitochondrial bioenergetics as well as providing greater throughput and application for time-sensitive assays.

10.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L400-L412, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36807882

RESUMEN

Muscle atrophy is an extrapulmonary complication of acute exacerbations (AE) in chronic obstructive pulmonary disease (COPD). The endogenous production and therapeutic application of glucocorticoids (GCs) have been implicated as drivers of muscle loss in AE-COPD. The enzyme 11 ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) activates GCs and contributes toward GC-induced muscle wasting. To explore the potential of 11ßHSD1 inhibition to prevent muscle wasting here, the objective of this study was to ascertain the contribution of endogenous GC activation and amplification by 11ßHSD1 in skeletal muscle wasting during AE-COPD. Emphysema was induced by intratracheal (IT) instillation of elastase to model COPD in WT and 11ßHSD1/KO mice, followed by vehicle or IT-LPS administration to mimic AE. µCT scans were obtained prior and at study endpoint 48 h following IT-LPS, to assess emphysema development and muscle mass changes, respectively. Plasma cytokine and GC profiles were determined by ELISA. In vitro, myonuclear accretion and cellular response to plasma and GCs were determined in C2C12 and human primary myotubes. Muscle wasting was exacerbated in LPS-11ßHSD1/KO animals compared with WT controls. RT-qPCR and western blot analysis showed elevated catabolic and suppressed anabolic pathways in muscle of LPS-11ßHSD1/KO animals relative to WTs. Plasma corticosterone levels were higher in LPS-11ßHSD1/KO animals, whereas C2C12 myotubes treated with LPS-11ßHSD1/KO plasma or exogenous GCs displayed reduced myonuclear accretion relative to WT counterparts. This study reveals that 11ß-HSD1 inhibition aggravates muscle wasting in a model of AE-COPD, suggesting that therapeutic inhibition of 11ß-HSD1 may not be appropriate to prevent muscle wasting in this setting.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1 , Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Animales , Humanos , Ratones , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Glucocorticoides/farmacología , Lipopolisacáridos , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Atrofia Muscular/prevención & control , Enfermedad Pulmonar Obstructiva Crónica/complicaciones
11.
Burns Trauma ; 11: tkac052, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36694861

RESUMEN

Background: Excessive scarring and fibrosis are the most severe and common complications of burn injury. Prolonged exposure to high levels of glucocorticoids detrimentally impacts on skin, leading to skin thinning and impaired wound healing. Skin can generate active glucocorticoids locally through expression and activity of the 11ß-hydroxysteroid dehydrogenase type 1 enzyme (11ß-HSD1). We hypothesised that burn injury would induce 11ß-HSD1 expression and local glucocorticoid metabolism, which would have important impacts on wound healing, fibrosis and scarring. We additionally proposed that pharmacological manipulation of this system could improve aspects of post-burn scarring. Methods: Skin 11ß-HSD1 expression in burns patients and mice was examined. The impacts of 11ß-HSD1 mediating glucocorticoid metabolism on burn wound healing, scar formation and scar elasticity and quality were additionally examined using a murine 11ß-HSD1 genetic knockout model. Slow-release scaffolds containing therapeutic agents, including active and inactive glucocorticoids, were developed and pre-clinically tested in mice with burn injury. Results: We demonstrate that 11ß-HSD1 expression levels increased substantially in both human and mouse skin after burn injury. 11ß-HSD1 knockout mice experienced faster wound healing than wild type mice but the healed wounds manifested significantly more collagen deposition, tensile strength and stiffness, features characteristic of excessive scarring. Application of slow-release prednisone, an inactive glucocorticoid, slowed the initial rate of wound closure but significantly reduced post-burn scarring via reductions in inflammation, myofibroblast generation, collagen production and scar stiffness. Conclusions: Skin 11ß-HSD1 expression is a key regulator of wound healing and scarring after burn injury. Application of an inactive glucocorticoid capable of activation by local 11ß-HSD1 in skin slows the initial rate of wound closure but significantlyimproves scar characteristics post burn injury.

12.
J Endocrinol ; 255(3): 117-129, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36205523

RESUMEN

The aged phenotype shares several metabolic similarities with that of circulatory glucocorticoid excess (Cushing's syndrome), including type 2 diabetes, obesity, hypertension, and myopathy. We hypothesise that local tissue generation of glucocorticoids by 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), which converts 11-dehydrocorticosterone to active corticosterone in rodents (corticosterone to cortisol in man), plays a role in driving age-related chronic disease. In this study, we have examined the impact of ageing on glucocorticoid metabolism, insulin tolerance, adiposity, muscle strength, and blood pressure in both wildtype (WT) and transgenic male mice with a global deletion of 11ß-HSD1 (11ß-HSD1-/-) following 4 months high-fat feeding. We found that high fat-fed 11ß-HSD1-/- mice were protected from age-related glucose intolerance and hyperinsulinemia when compared to age/diet-matched WTs. By contrast, aged 11ß-HSD1-/- mice were not protected from the onset of sarcopenia observed in the aged WTs. Young 11ß-HSD1-/- mice were partially protected from diet-induced obesity; however, this partial protection was lost with age. Despite greater overall obesity, the aged 11ß-HSD1-/- animals stored fat in more metabolically safer adipose depots as compared to the aged WTs. Serum analysis revealed both WT and 11ß-HSD1-/- mice had an age-related increase in morning corticosterone. Surprisingly, 11ß-HSD1 oxo-reductase activity in the liver and skeletal muscle was unchanged with age in WT mice and decreased in gonadal adipose tissue. These data suggest that deletion of 11ß-HSD1 in high fat-fed, but not chow-fed, male mice protects from age-related insulin resistance and supports a metabolically favourable fat distribution.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1 , Diabetes Mellitus Tipo 2 , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Animales , Corticosterona/metabolismo , Glucocorticoides/metabolismo , Hidrocortisona , Insulina , Masculino , Ratones , Ratones Transgénicos , Obesidad/genética
13.
Neurology ; 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36240084

RESUMEN

BACKGROUND AND OBJECTIVE: We evaluated the metabolomic profile in CSF, serum and urine of participants with idiopathic intracranial hypertension (IIH) compared to controls and measured changes in metabolism associated with clinical markers of disease activity and treatment. METHODS: A case-control study compared women aged 18-55 years with active IIH (Friedman diagnostic criteria), to a sex, age and body mass index matched control group. IIH participants were identified from neurology and ophthalmology clinics from National Health Service hospitals and underwent a prospective intervention to induce disease remission through weight loss with re-evaluation at 12 months. Clinical assessments included lumbar puncture, headache, papilledema and visual measurements. Spectra of CSF, serum and urine metabolites were acquired utilizing proton nuclear magnetic resonance spectroscopy. RESULTS: Urea was lower in IIH (CSF; controls median ±IQR 0.196 ±0.008, IIH 0.058 ±0.059, p<0.001, urine; controls 5971.370 ±3021.831, IIH 4691.363 ±1955.774, p=0.009), correlated with ICP (urine p=0.019) and headache severity (CSF p=0.031) and increased by 12 months (CSF 12 months; 0.175 ±0.043, p=0.004, urine; 5210.874 ±1825.302, p=0.043). The lactate:pyruvate ratio was increased compared to controls (CSF; controls 49.739 ±19.523, IIH 113.114 ±117.298, p=0.023, serum; controls 38.187 ±13.392, IIH 54.547 ±18.471, p=0.004) and decreased at 12 months (CSF; 113.114 ±117.298, p<0.001). Baseline acetate was higher in IIH (CSF; controls 0.128 ±0.041, IIH 0.192 ±0.151, p=0.008), correlated with headache severity (p = 0.030) and headache disability (p = 0.003) and was reduced at 12 months (0.160 ±0.060, p = 0.007). Ketones 3-hydroxybutyrate and acetoacetate were altered in CSF at baseline in IIH (3-hydroxybutyrate; controls 0.074 ±0.063, IIH 0.049 ±0.055, p = 0.019, acetoacetate; controls 0.013 ±0.007, IIH 0.017 ±0.010, p = 0.013) and normalized at 12 months (0.112 ±0.114, p = 0.019, 0.029 ±0.017, p = 0.015 respectively). DISCUSSION: We observed metabolic disturbances that are evident in CSF, serum and urine of IIH participants, suggesting global metabolic dysregulation. Altered ketone body metabolites normalized following therapeutic weight loss. CSF:serum urea ratio was altered which may influence ICP dynamics and headache. Elevated CSF acetate, known to stimulate trigeminal sensitization, was associated with headache morbidity. These alterations of metabolic pathways specific to IIH provide biological insight and warrants mechanistic evaluation.

14.
Front Rehabil Sci ; 3: 854041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189070

RESUMEN

Introduction: End stage liver disease (ESLD) is associated with loss of muscle mass and function, known as sarcopenia, which can increase the risk of complications of ESLD, hospitalization and mortality. Therefore, the accurate assessment of muscle mass is essential to evaluate sarcopenia in ESLD. However, manual segmentation of muscle volume (MV) can be laborious on cross-sectional imaging, due to the number of slices that require analysis. This study aimed to investigate the impact of reducing the number of slices required for MV estimation. Further, we aimed to compare two equations utilized in estimating MV (cylindrical and truncated cone). Methods: Thirty eight ESLD patients (23 males; 54.8 ± 10.7 years) were recruited from the Queen Elizabeth University Hospital Birmingham. A 3T MRI scan was completed of the lower limbs. Quadriceps MV was estimated utilizing 1-, 2-, 3-, and 4 cm slice intervals with both cylindrical and truncated cone equations. Absolute and relative error (compared to 1 cm slice interval) was generated for 2-, 3-, and 4 cm slice intervals. L3 skeletal muscle index (SMI) was also calculated in 30 patients. Results: Relative error increased with slice interval using the cylindrical (0.45 vs. 1.06 vs. 1.72%) and truncated cone equation (0.27 vs. 0.58 vs. 0.74%) for 2, 3, and 4 cm, respectively. Significantly, the cylindrical equation produced approximately twice the error compared to truncated cone, with 3 cm (0.58 vs. 1.06%, P < 0.01) and 4 cm intervals (0.74 vs. 1.72%, P < 0.001). Finally, quadriceps MV was significantly correlated to L3 SMI (r 2 = 0.44, P < 0.0001). Conclusion: The use of the truncated equation with a 4 cm slice interval on MRI offers an efficient but accurate estimation of quadricep muscle volume in ESLD patients.

15.
J Headache Pain ; 23(1): 127, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36175833

RESUMEN

BACKGROUND: Migraine is a highly prevalent disorder with significant economical and personal burden. Despite the development of effective therapeutics, the causes which precipitate migraine attacks remain elusive. Clinical studies have highlighted altered metabolic flux and mitochondrial function in patients. In vivo animal experiments can allude to the metabolic mechanisms which may underlie migraine susceptibility. Understanding the translational relevance of these studies are important to identifying triggers, biomarkers and therapeutic targets in migraine. MAIN BODY: Functional imaging studies have suggested that migraineurs feature metabolic syndrome, exhibiting hallmark features including upregulated oxidative phosphorylation yet depleted available free energy. Glucose hypometabolism is also evident in migraine patients and can lead to altered neuronal hyperexcitability such as the incidence of cortical spreading depression (CSD). The association between obesity and increased risk, frequency and worse prognosis of migraine also highlights lipid dysregulation in migraine pathology. Calcitonin gene related peptide (CGRP) has demonstrated an important role in sensitisation and nociception in headache, however its role in metabolic regulation in connection with migraine has not been thoroughly explored. Whether impaired metabolic function leads to increased release of peptides such as CGRP or excessive nociception leads to altered flux is yet unknown. CONCLUSION: Migraine susceptibility may be underpinned by impaired metabolism resulting in depleted energy stores and altered neuronal function. This review discusses both clinical and in vivo studies which provide evidence of altered metabolic flux which contribute toward pathophysiology. It also reviews the translational relevance of animal studies in identifying targets of biomarker or therapeutic development.


Asunto(s)
Depresión de Propagación Cortical , Trastornos Migrañosos , Animales , Péptido Relacionado con Gen de Calcitonina , Cefalea , Lípidos , Trastornos Migrañosos/diagnóstico por imagen
16.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806338

RESUMEN

Therapeutic glucocorticoids (GCs) are powerful anti-inflammatory tools in the management of chronic inflammatory diseases such as rheumatoid arthritis (RA). However, their actions on bone in this context are complex. The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) is a mediator of the anti-inflammatory actions of therapeutic glucocorticoids (GCs) in vivo. In this study we delineate the role of 11ß-HSD1 in the effects of GC on bone during inflammatory polyarthritis. Its function was assessed in bone biopsies from patients with RA and osteoarthritis, and in primary osteoblasts and osteoclasts. Bone metabolism was assessed in the TNF-tg model of polyarthritis treated with oral GC (corticosterone), in animals with global (TNF-tg11ßKO), mesenchymal (including osteoblast) (TNF-tg11ßflx/tw2cre) and myeloid (including osteoclast) (TNF-tg11ßflx/LysMcre) deletion. Bone parameters were assessed by micro-CT, static histomorphometry and serum metabolism markers. We observed a marked increase in 11ß-HSD1 activity in bone in RA relative to osteoarthritis bone, whilst the pro-inflammatory cytokine TNFα upregulated 11ß-HSD1 within osteoblasts and osteoclasts. In osteoclasts, 11ß-HSD1 mediated the suppression of bone resorption by GCs. Whilst corticosterone prevented the inflammatory loss of trabecular bone in TNF-tg animals, counterparts with global deletion of 11ß-HSD1 were resistant to these protective actions, characterised by increased osteoclastic bone resorption. Targeted deletion of 11ß-HSD1 within osteoclasts and myeloid derived cells partially reproduced the GC resistant phenotype. These data reveal the critical role of 11ß-HSD1 within bone and osteoclasts in mediating the suppression of inflammatory bone loss in response to therapeutic GCs in chronic inflammatory disease.


Asunto(s)
Artritis Reumatoide , Resorción Ósea , Osteoartritis , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Animales , Artritis Reumatoide/metabolismo , Resorción Ósea/metabolismo , Corticosterona/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Inflamación/patología , Osteoartritis/metabolismo , Osteoclastos/metabolismo
17.
Eur J Endocrinol ; 187(2): 323-333, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35584002

RESUMEN

Context: Idiopathic intracranial hypertension (IIH) is a disease of raised intracranial pressure (ICP) of unknown etiology. Reductions in glucocorticoid metabolism are associated with improvements in IIH disease activity. The basal IIH glucocorticoid metabolism is yet to be assessed. Objective: The objective of this study was to determine the basal glucocorticoid phenotype in IIH and assess the effects of weight loss on the IIH glucocorticoid phenotype. Design: A retrospective case-control study and a separate exploratory analysis of a prospective randomized intervention study were carried out. Methods: The case-control study compared female IIH patients to BMI, age, and sex-matched controls. In the randomized intervention study, different IIH patients were randomized to either a community weight management intervention or bariatric surgery, with patients assessed at baseline and 12 months. Glucocorticoid levels were determined utilizing 24-h urinary steroid profiles alongside the measurement of adipose tissue 11ß-HSD1 activity. Results: Compared to control subjects, patients with active IIH had increased systemic 11ß-hydroxysteroid dehydrogenase (11ß-HSD1) and 5α-reductase activity. The intervention study demonstrated that weight loss following bariatric surgery reduced systemic 11ß-HSD1 and 5α-reductase activity. Reductions in these were associated with reduced ICP. Subcutaneous adipose tissue explants demonstrated elevated 11ß-HSD1 activity compared to samples from matched controls. Conclusion: The study demonstrates that in IIH, there is a phenotype of elevated systemic and adipose 11ß-HSD1 activity in excess to that mediated by obesity. Bariatric surgery to induce weight loss was associated with reductions in 11ß-HSD1 activity and decreased ICP. These data reflect new insights into the IIH phenotype and further point toward metabolic dysregulation as a feature of IIH.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1 , Seudotumor Cerebral , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Tejido Adiposo/metabolismo , Estudios de Casos y Controles , Femenino , Glucocorticoides/metabolismo , Humanos , Estudios Prospectivos , Seudotumor Cerebral/metabolismo , Estudios Retrospectivos , Pérdida de Peso
18.
Cells ; 11(7)2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35406665

RESUMEN

Sarcopenia is a common complication affecting liver disease patients, yet the underlying mechanisms remain unclear. We aimed to elucidate the cellular mechanisms that drive sarcopenia progression using an in vitro model of liver disease. C2C12 myotubes were serum and amino acid starved for 1-h and subsequently conditioned with fasted ex vivo serum from four non-cirrhotic non-alcoholic fatty liver disease patients (NAFLD), four decompensated end-stage liver disease patients (ESLD) and four age-matched healthy controls (CON) for 4- or 24-h. After 4-h C2C12 myotubes were treated with an anabolic stimulus (5 mM leucine) for 30-min. Myotube diameter was reduced following treatment with serum from ESLD compared with CON (−45%) and NAFLD (−35%; p < 0.001 for both). A reduction in maximal mitochondrial respiration (24% and 29%, respectively), coupling efficiency (~12%) and mitophagy (~13%) was identified in myotubes conditioned with NAFLD and ESLD serum compared with CON (p < 0.05 for both). Myostatin (43%, p = 0.04) and MuRF-1 (41%, p = 0.03) protein content was elevated in myotubes treated with ESLD serum compared with CON. Here we highlight a novel, experimental platform to further probe changes in circulating markers associated with liver disease that may drive sarcopenia and develop targeted therapeutic interventions.


Asunto(s)
Enfermedad Hepática en Estado Terminal , Enfermedad del Hígado Graso no Alcohólico , Sarcopenia , Humanos , Fibras Musculares Esqueléticas , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Biosíntesis de Proteínas , Sarcopenia/complicaciones
19.
Cell Rep ; 38(5): 110320, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108535

RESUMEN

The demands of cancer cell proliferation alongside an inadequate angiogenic response lead to insufficient oxygen availability in the tumor microenvironment. Within the mitochondria, oxygen is the major electron acceptor for NADH, with the result that the reducing potential produced through tricarboxylic acid (TCA) cycle activity and mitochondrial respiration are functionally linked. As the oxidizing activity of the TCA cycle is required for efficient synthesis of anabolic precursors, tumoral hypoxia could lead to a cessation of proliferation without another means of correcting the redox imbalance. We show that in hypoxic conditions, mitochondrial pyrroline 5-carboxylate reductase 1 (PYCR1) activity is increased, oxidizing NADH with the synthesis of proline as a by-product. We further show that PYCR1 activity is required for the successful maintenance of hypoxic regions by permitting continued TCA cycle activity, and that its loss leads to significantly increased hypoxia in vivo and in 3D culture, resulting in widespread cell death.


Asunto(s)
Proliferación Celular/fisiología , Neoplasias/metabolismo , Oxígeno/metabolismo , Pirrolina Carboxilato Reductasas/metabolismo , Ciclo del Ácido Cítrico/fisiología , Humanos , Mitocondrias/metabolismo , Prolina/metabolismo , Microambiente Tumoral , delta-1-Pirrolina-5-Carboxilato Reductasa
20.
J Neurol ; 269(4): 1945-1956, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34420064

RESUMEN

OBJECTIVE: Obesity is a risk factor for idiopathic intracranial hypertension (IIH) and obstructive sleep apnoea (OSA). We aimed to determine the prevalence of OSA in IIH and evaluate the diagnostic performance of OSA screening tools in IIH. Additionally, we evaluated the relationship between weight loss, OSA and IIH over 12 months. METHODS: A sub-study of a multi-centre, randomised controlled parallel group trial comparing the impact of bariatric surgery vs. community weight management intervention (CWI) on IIH-related outcomes over 12 months (IIH:WT). OSA was assessed using home-based polygraphy (ApneaLink Air, ResMed) at baseline and 12 months. OSA was defined as an apnoea-hypopnoea index (AHI) ≥ 15 or ≥ 5 with excessive daytime sleepiness (Epworth Sleepiness Scale ≥11 ). RESULTS: Of the 66 women in the IIH: WT trial, 46 were included in the OSA sub-study. OSA prevalence was 47% (n = 19). The STOP-BANG had the highest sensitivity (84%) compared to the Epworth Sleepiness Scale (69%) and Berlin (68%) to detect OSA. Bariatric surgery resulted in greater reductions in AHI vs. CWI (median [95%CI] AHI reduction of - 2.8 [ - 11.9, 0.7], p = 0.017). Over 12 months there was a positive association between changes in papilloedema and AHI (r = 0.543, p = 0.045), despite adjustment for changes in the body mass index (R2 = 0.522, p = 0.017). CONCLUSION: OSA is common in IIH and the STOP-BANG questionnaire was the most sensitive screening tool. Bariatric surgery improved OSA in patients with IIH. The improvement in AHI was associated with improvement in papilloedema independent of weight loss. Whether OSA treatment has beneficial impact on papilloedema warrants further evaluation. TRIAL REGISTRATION NUMBER: IIH: WT is registered as ISRCTN40152829 and on ClinicalTrials.gov as NCT02124486 (28/04/2014).


Asunto(s)
Cirugía Bariátrica , Seudotumor Cerebral , Apnea Obstructiva del Sueño , Cirugía Bariátrica/efectos adversos , Índice de Masa Corporal , Femenino , Humanos , Seudotumor Cerebral/complicaciones , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/epidemiología , Apnea Obstructiva del Sueño/terapia , Pérdida de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...